989 resultados para Th17 cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endurance exercise can cause immunosuppression and increase the risk of upper respiratory illness. The present study examined changes in the secretion of T helper (Th) cell cytokines after endurance exercise. Ten highly trained road cyclists [mean±SEM: age 24.2±1.7 years; height 1.82±0.02 m; body mass 73.8±2.0 kg; peak oxygen uptake 65.9±2.3 mL/(kg•min)] performed 2 h of cycling exercise at 90% of the second ventilatory threshold. Peripheral blood mononuclear cells were isolated and stimulated with phytohemagglutinin. Plasma cortisol concentrations and the concentration of Th1/Th2/Th17 cell cytokines were examined. Data were analyzed using both traditional statistics and magnitude-based inferences. Results revealed a significant decrease in plasma cortisol at 4–24 h postexercise compared with pre-exercise values. Qualitative analysis revealed postexercise changes in concentrations of plasma cortisol, IL-2, TNF, IL-4, IL-6, IL-10, and IL-17A compared with pre-exercise values. A Th1/Th2 shift was evident immediately postexercise. Furthermore, for multiple cytokines, including IL-2 and TNF (Th1), IL-6 and IL-10 (Th2), and IL-17 (Th17), no meaningful change in concentration occurred until more than 4 h postexercise, highlighting the duration of exercise-induced changes in immune function. These results demonstrate the importance of considering “clinically” significant versus statistically significant changes in immune cell function after exercise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sex hormones influence immune responses and the development of autoimmune diseases including MS and its animal model, EAE. Although it has been previously reported that ovariectomy could worsen EAE, the mechanisms implicated in the protective action of endogenous ovarian hormones have not been addressed. In this report, we now show that endogenous estrogens limit EAE development and CNS inflammation in adult female mice through estrogen receptor expression in the host non-hematopoietic tissues. We provide evidence that the enhancing effect of gonadectomy on EAE development was due to quantitative rather than qualitative changes in effector Th1 or Th17 cell recruitment into the CNS. Consistent with this observation, adoptive transfer of myelin oligodendrocyte glycoprotein-specific encephalitogenic CD4(+) T lymphocytes induced more severe EAE in ovariectomized mice as compared to normal female mice. Finally, we show that gonadectomy accelerated the early recruitment of inflammatory cells into the CNS upon adoptive transfer of encephalitogenic CD4(+) T cells. Altogether, these data show that endogenous estrogens, through estrogen receptor , exert a protective effect on EAE by limiting the recruitment of blood-derived inflammatory cells into the CNS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Segmented filamentous bacterium (SFB) is a symbiont that drives postnatal maturation of gut adaptive immune responses. In contrast to nonpathogenic E. coli, SFB stimulated vigorous development of Peyer's patches germinal centers but paradoxically induced only a low frequency of specific immunoglobulin A (IgA)-secreting cells with delayed accumulation of somatic mutations. Moreover, blocking Peyer's patch development abolished IgA responses to E. coli, but not to SFB. Indeed, SFB stimulated the postnatal development of isolated lymphoid follicles and tertiary lymphoid tissue, which substituted for Peyer's patches as inductive sites for intestinal IgA and SFB-specific T helper 17 (Th17) cell responses. Strikingly, in mice depleted of gut organized lymphoid tissue, SFB still induced a substantial but nonspecific intestinal Th17 cell response. These results demonstrate that SFB has the remarkable capacity to induce and stimulate multiple types of intestinal lymphoid tissues that cooperate to generate potent IgA and Th17 cell responses displaying only limited target specificity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kidney transplantation is the best treatment for patients who have lost kidney function. Renal transplant patients require accurate immunosuppressive drugs to prevent rejection. In this process T helper cells of the immune system perform key role in the immune response to the graft, and recently the Th17 cells has been investigated by production of IL-17 potent proinflammatory cytokine whose role in the rejection has also been described. Increased of Th17 cell expression has an important association with the development of rejection in renal microenvironment, however the likely mechanism is not well understood. This study aimed to evaluate the Th17 response from the influence of the chemotactic axis CCR6/CCL20 and genetic variants in IL-17 and IL-17RA. We conducted a case-control study involving 148 patients transplanted at the University Hospital Onofre Lopes/UFRN in which assessed by immunohistochemistry protein expression of IL-17 and chemokines CCR6/CCL20 and by PCR-RFLP genetic variants in IL17A and IL17RA. Our results showed no influence of genetic polymorphisms on the outcome of the graft or the protein expression of IL-17. In renal graft microenvironment found several sources producing IL-17: tubular epithelial cells, glomerular cells, neutrophils and cell interstitial infiltration, in turn the expression of chemotactic axis CCR6/CCL20 was restricted to the tubular epithelium cells. There was a slight positive linear correlation between the presence of IL-17 and expression of chemotactic axis CCR6/CCL20 in the microenvironment of renal graft. Therefore, we believe that, combined with our results, further studies with increased "n" sample and greater control over the variables involved in obtaining the renal specimen, can determine more clearly the influence of chemotactic axis CCR6 / CCL20 and polymorphisms in cytokines related to Th17 profile on the control of this cell subtype response in rejection processes to renal allograft.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) is a common inflammatory arthritic condition. Overt inflammatory bowel disease (IBD) occurs in about 10% of AS patients, and in addition 70% of AS cases may have subclinical terminal ileitis. Spondyloarthritis is also common in IBD patients. We therefore tested Crohn's disease susceptibility genes for association with AS, aiming to identify pleiotropic genetic associations with both diseases. Genotyping was carried out using Sequenom and Applied Biosystems TaqMan and OpenArray technologies on 53 markers selected from 30 Crohn's disease associated genomic regions. We tested genotypes in a population of unrelated individual cases (n = 2,773) and controls (n = 2,215) of white European ancestry for association with AS. Statistical analysis was carried out using a Cochran-Armitage test for trend in PLINK. Strong association was detected at chr1q32 near KIF21B (rs11584383, P = 1.66 x 10-10, odds ratio (OR) = 0.74, 95% CI:0.68-0.82). Association with disease was also detected for 2 variants within STAT3 (rs6503695, P = 4.6×10-4. OR = 0.86 (95% CI:0.79-0.93); rs744166, P = 2.6×10-5, OR = 0.84 (95% CI:0.77-0.91)). Association was confirmed for IL23R (rs11465804, P = 1.2×10-5, OR = 0.65 (95% CI:0.54-0.79)), and further associations were detected for IL12B (rs10045431, P = 5.261025, OR = 0.83 (95% CI:0.76-0.91)), CDKAL1 (rs6908425, P = 1.1×10-4, OR = 0.82 (95% CI:0.74-0.91)), LRRK2/MUC19 (rs11175593, P = 9.9×10-5, OR = 1.92 (95% CI: 1.38-2.67)), and chr13q14 (rs3764147, P = 5.9×10-4, OR = 1.19 (95% CI: 1.08-1.31)). Excluding cases with clinical IBD did not significantly affect these findings. This study identifies chr1q32 and STAT3 as ankylosing spondylitis susceptibility loci. It also further confirms association for IL23R and detects suggestive association with another 4 loci. STAT3 is a key signaling molecule within the Th17 lymphocyte differentiation pathway and further enhances the case for a major role of this T-lymphocyte subset in ankylosing spondylitis. Finally these findings suggest common aetiopathogenic pathways for AS and Crohn's disease and further highlight the involvement of common risk variants across multiple diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective Ankylosing spondylitis (AS) is a common inflammatory arthritis affecting primarily the axial skeleton. IL23R is genetically associated with AS. This study was undertaken to investigate and characterize the role of interleukin-23 (IL-23) signaling in AS pathogenesis. Methods The study population consisted of patients with active AS (n = 17), patients with psoriatic arthritis (n = 8), patients with rheumatoid arthritis, (n = 9), and healthy subjects (n = 20). IL-23 receptor (IL-23R) expression in T cells was determined in each subject group, and expression levels were compared. Results The proportion of IL-23R-expressing T cells in the periphery was 2-fold higher in AS patients than in healthy controls, specifically driven by a 3-fold increase in IL-23R-positive γ/δ T cells in AS patients. The proportions of CD4+ and CD8+ cells that were positive for IL-17 were unchanged. This increased IL-23R expression on γ/δ T cells was also associated with enhanced IL-17 secretion, with no observable IL-17 production from IL-23R-negative γ/δ T cells in AS patients. Furthermore, γ/δ T cells from AS patients were heavily skewed toward IL-17 production in response to stimulation with IL-23 and/or anti-CD3/CD28. Conclusion Recently, mouse models have shown IL-17-secreting γ/δ T cells to be pathogenic in infection and autoimmunity. Our data provide the first description of a potentially pathogenic role of these cells in a human autoimmune disease. Since IL-23 is a maturation and growth factor for IL-17-producing cells, increased IL-23R expression may regulate the function of this putative pathogenic γ/δ T cell population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose of review The field of genetic research in ankylosing spondylitis (AS) is advancing rapidly. The purpose of this review is to outline recent findings, particularly, in regard to genetic studies of the major histocompatibility complex (MHC) and the non-MHC genes IL23R, ERAP1, and killer cell immunologlobulin-like receptor (KIR) complex, in AS. Recent findings: Convincing evidence has been reported for the existence of further non-B27 MHC genes involved in AS. Strong, replicated association has been reported with IL23R and ERAP1 and AS. The IL23R finding strongly implicates the TH17 lymphocyte system in AS aetiopathogenesis. Suggestive evidence of a role for KIR gene polymorphism in AS exists, but definitive findings are awaited. Summary: The findings suggest that further genome-wide studies in large case-control cohorts are likely to be very productive in this disease. The IL23R findings and subsequent immunological investigations suggest that targeted intervention in the TH17 system is likely to have major therapeutic benefit, as it does in the genetically related diseases, inflammatory bowel disease and psoriasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose of Review Over the past 3 years, several new genes and gene deserts have been identified that are associated with ankylosing spondylitis (AS). The purpose of this review is to discuss the major findings of these studies, and the answers they provide and questions they raise about the pathogenesis of this common condition. Recent Findings: Five genes/genetic regions have now definitively been associated with AS [the major histocompatibility complex (MHC), IL23R, ERAP1, 2p15 and 21q22]. Strong evidence to support association with the disease has been demonstrated for the genes IL1R2, ANTXR2, TNFSF15, TNFR1 and a region on chromosome 16q including the gene TRADD. There is an overrepresentation of genes involved in Th17 lymphocyte differentiation/activation among genes associated with AS and the related diseases inflammatory bowel disease and psoriasis, pointing strongly to this pathway as playing a major causative role in the disease. Increasing information about differential association of HLA-B27 subtypes with disease suggests a hierarchy of strength of association of those alleles with AS, providing a useful test as to the validity of different potential mechanisms of association of HLA-B27 with AS. The mechanism underlying the association of the gene deserts, 2p15 and 21q22, suggests the involvement of noncoding RNA in AS etiopathogenesis. Summary: The increasing list of genes identified as being definitely involved in AS provides a useful platform for hypothesis-driven research in the field, providing a potential alternative route to determining the underlying mechanisms involved in the disease to research focusing on HLA-B27 alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) and spondyloarthritis are strongly genetically determined. The long-standing association with HLA-B27 is well described, although the mechanism by which that association induces AS remains uncertain. Recent developments include the description of HLA-B27 tag single nucleotide polymorphisms in European and Asian populations. An increasing number of non-MHC genetic associations have been reported, which provided amongst other things the first evidence of the involvement of the IL-23 pathway in AS. The association with ERAP1 is now known to be restricted to HLA-B27 positive disease. Preliminary studies on the genetics of axial spondyloarthritis demonstrate a lower HLA-B27 carriage rate compared with AS. Studies with larger samples and including non-European ethnic groups are likely to further advance the understanding of the genetics of AS and spondyloarthritis. © 2012.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Funktion der Th 17-Zelllinie im Lungenkarzinom wurde noch nicht vollständig verstanden. In dieser Studie wurde darüber berichtet, dass die Expression der Th17-Zellmarker (RORA, RORC2, IL-17A) in den Lungen der Patienten mit Adenokarzinom erhöht ist, und diese mit dem Transkriptionsfaktor der regulatorischen T-Zellen FOXP 3 positiv korrelieren, was auf eine Beziehung dieser Zelltypen deutet. Außerdem hat man auch herausgefunden, dass IL-17A mit T-bet Trankriptionsfaktor in den Patienten entgegengesetzt korreliert. Die Blockade in einem Mausmodell für Lungen-Adenokarzinom resultierte die Reduktion von Tumorbefall in der Lunge, lokale Expansion der IFNg produzierenden CD4+ T-Effektorzellen und Reduktion der CD4+CD25+FOXP3+ regulatorischen T-Zellen. Untersuchungen in T-bet(-/-) Mäusen zeigten, dass die antikarzinogenen Wirkungen der antiIL-17A-Behandlung T-bet Transkriptionsfaktor benötigen, um sowohl die FOXP3 regulatorischen T-Zellen als auch die Th17-Zellen in vivo zu supprimieren. Dementsprechend hat man herausgefunden, dass der Th17-Pfad beim Fehlen des T-bet Transkriptionsfaktors durch Hochregulierung des IL-23 Rezeptors in CD4+ T-Zellen stimuliert wurde. Bemerkenswert, dass der IL-17 Rezeptor hauptsächlich auf den CD4+CD62Lhigh naiven T-Zellen exprimiert wird und sowohl auf den CD4+T-bet+ Th1- als auch auf den CD4+CD25+FOXP3+ Treg -Zellen im Tumor fehlt. Dieses resultiert den Verlust der Kontrolle der IL-17 auf Th1 und Treg-Zellentwicklung. Diese Ergebnisse deuten darauf hin, dass die Blockade des IL-17A eine mögliche klinische Behandlung darstellt, weil sie die IFNg produzierenden Th1 Zellen unterstützt und die CD4+CD25+FOXP3+ regulatorischen T Zellen in Lungen Karzinom reduziert.